-->

Minggu, 05 Maret 2017

Tetrachromacy is the condition of possessing four independent channels for conveying color information, or possessing four types of cone cells in the eye. Organisms with tetrachromacy are called tetrachromats.

In tetrachromatic organisms, the sensory color space is four-dimensional, meaning that to match the sensory effect of arbitrarily chosen spectra of light within their visible spectrum requires mixtures of at least four primary colors.

Tetrachromacy is demonstrated among several species of birds, fish, amphibians, reptiles, insects and some mammals. It was the normal condition of most mammals in the past; a genetic change made the majority of species of this class eventually lose two of their four cones.

Physiology

The normal explanation of tetrachromacy is that the organism's retina contains four types of higher-intensity light receptors (called cone cells in vertebrates as opposed to rod cells, which are lower intensity light receptors) with different absorption spectra. This means that the animal may see wavelengths beyond those of a typical human being's eyesight, and may be able to distinguish between colors that, to a normal human, appear to be identical. Species with tetrachromatic color vision may have an unknown physiological advantage over rival species.

Examples

Fish

The goldfish (Carassius auratus auratus) and zebrafish (Danio rerio) are examples of tetrachromats, containing cone cells sensitive for red, green, blue and ultraviolet light.

Birds

Some species of birds, such as the zebra finch and the Columbidae, use the ultraviolet wavelength 300â€"400 nm specific to tetrachromatic color vision as a tool during mate selection and foraging. When selecting for mates, ultraviolet plumage and skin coloration show a high level of selection. A typical bird eye will respond to wavelengths from about 300 to 700 nm. In terms of frequency, this corresponds to a band in the vicinity of 430â€"1000 THz. Most birds have retinas with four spectral types of cone cells that are believed to mediate tetrachromatic color vision. Bird color vision is further improved by the filtering of pigmented oil droplets that are located in the photoreceptors. The oil droplets filter incident light before it reaches the visual pigment in outer segments of the photoreceptors.

The four cone types, and the specialization of pigmented oil droplets, give birds better color vision than that of humans . However, more recent research has suggested that tetrachromacy in birds only provide birds with a larger visual spectrum than that in humans (humans cannot see ultraviolet light, 300-400 nm), while the spectral resolution (the "sensitivity" to nuances) is similar.

Insects

Foraging insects can see wavelengths that flowers reflect (ranging from 300 nm to 700 nm). Pollination being a mutualistic relationship, foraging insects and plants have coevolved, both increasing wavelength range: in perception (pollinators), in reflection and variation (flower colors). Directional selection has led plants to display increasingly diverse amounts of color variations extending into the ultraviolet color scale, thus attracting higher levels of pollinators. Some unidentified pollinators may use tetrachromatic color vision to increase and maintain a higher foraging success rate over their trichromatic competitors.

Mammals

Reindeer

In areas where reindeer live, the daylight hours are scarce. This means the light is scattered such that the majority of light that reaches objects is blue or UV. Some parts of the environment absorb UV light and therefore to UV-sensitive reindeer, appear to be black, strongly contrasting with the snow. These include urine (indicating predators or competitors), lichens (a food source) and fur (as possessed by wolves, predators of reindeer). Although reindeer do not possess a specific UV opsin, retinal responses to 330 nm have been recorded, mediated by other opsins. It has been proposed that UV flashes on power lines are responsible for reindeer avoiding these structures because "...in darkness these animals [reindeer] see power lines not as dim, passive structures but, rather, as lines of flickering light stretching across the terrain."

Humans

Humans are usually trichromats.

In humans, two cone cell pigment genes are present on the X chromosome: the classical type 2 opsin genes OPN1MW and OPN1MW2. It has been suggested that humans with two X chromosomes could possess multiple cone cell pigments, perhaps born as full tetrachromats who have four simultaneously functioning kinds of cone cells, each type with a specific pattern of responsiveness to different wavelengths of light in the range of the visible spectrum. One study suggested that 2â€"3% of the world's women might have the type of fourth cone whose sensitivity peak is between the standard red and green cones, giving, theoretically, a significant increase in color differentiation. Another study suggests that as many as 50% of women and 8% of men may have four photopigments and corresponding increased chromatic discrimination compared to trichromats. In 2010, after 20 years of study of women with four types of cones (non-functional tetrachromats), neuroscientist Dr. Gabriele Jordan identified a woman (subject cDa29) who could detect a greater variety of colors than trichromats could, corresponding with a functional tetrachromat (or true tetrachromat). Apes, Old World monkeys, and humans normally have three types of cone cells and are therefore trichromats. However, at low light intensities, the rod cells may contribute to color vision, giving a small region of tetrachromacy in the color space; human rod cells' sensitivity is greatest at a blueish-green wavelength.

Variation in cone pigment genes is widespread in most human populations, but the most prevalent and pronounced tetrachromacy would derive from female carriers of major red/green pigment anomalies, usually classed as forms of "color blindness" (protanomaly or deuteranomaly). The biological basis for this phenomenon is X-inactivation of heterozygotic alleles for retinal pigment genes, which is the same mechanism that gives the majority of female new-world monkeys trichromatic vision.

In humans, preliminary visual processing occurs in the neurons of the retina. It is not known how these nerves would respond to a new color channel, that is, whether they could handle it separately or just combine it in with an existing channel. Visual information leaves the eye by way of the optic nerve; it is not known whether the optic nerve has the spare capacity to handle a new color channel. A variety of final image processing takes place in the brain; it is not known how the various areas of the brain would respond if presented with a new color channel.

Mice, which normally have only two cone pigments, can be engineered to express a third cone pigment, and appear to demonstrate increased chromatic discrimination, arguing against some of these obstacles; however, the original publication's claims about plasticity in the optic nerve have also been disputed.

Humans cannot see ultraviolet light directly because the lens of the eye blocks most light in the wavelength range of 300â€"400 nm; shorter wavelengths are blocked by the cornea. The photoreceptor cells of the retina are sensitive to near ultraviolet light and people lacking a lens (a condition known as aphakia) see near ultraviolet light (down to 300 nm) as whitish blue, or for some wavelengths, whitish violet, probably because all three types of cones are roughly equally sensitive to ultraviolet light, but blue cones a bit more.

Tetrachromacy may also enhance vision in dim lighting.

See also

  • Dichromacy
  • Evolution of color vision
  • Monochromacy
  • Pentachromacy
  • RG color space
  • RGBY
  • Somatosensory amplification
  • Supertaster
  • Trichromacy

References

External links

  • Goldsmith, Timothy H. "What Birds See" Scientific American July 2006. An article about the tetrachromatic vision of birds
  • Thompson, Evan (2000). "Comparative color vision: Quality space and visual ecology." In Steven Davis (Ed.), Color Perception: Philosophical, Psychological, Artistic and Computational Perspectives, pp. 163â€"186. Oxford: Oxford University Press.
  • Looking for Madam Tetrachromat By Glenn Zorpette. Red Herring magazine, 1 November 2000
  • "Exploring the fourth dimension". University of Bristol School of Biological Sciences. March 20, 2009.
  • Colors - The Perfect Yellow By Radiolab, 21 May 2012 (Explores tetrachromacy in humans)
  • The dimensionality of color vision in carriers of anomalous trichromacy--Gabriele Jordan et al--Journal of Vision August 12, 2010:
  • On Tetrachromacy Ágnes Holba & B. Lukács
  • San Diego woman Concetta Antico diagnosed with 'super vision' San Diego ABC television report, November 22, 2013.
 
Sponsored Links